THE USE OF ELECTRONIC STAFF DOSIMETERS IN DRIVING PRACTICE IMPROVEMENT:

PHILIPS CARDIAC IGT STUDY DAY – 30TH SEPTEMBER 2019

Andy Rogers, Lead Interventional MPE Sian Vaughan, Bio-informatics Trainee

Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust

MUST DECLARE THAT PHILIPS INITIALLY FUNDED THE KIT BUT NOW PART OF NUH MMS

Outline of my talk

- Why electronic?
- Introduction to our specific technology
- How we currently use the data
- Current promising avenues of further research

Why electronic dosimeters?

- Don't require changing every month
- Real time
- Open up additional 'big brother' possibilities! (the big win!)

Introduction to the specific technology

- Utilising the RaySafe i2/i3 dosimeter
- Integrated into Philips Allura/Azurion time issue
- Philips DoseAware Xtend enables wifi hubs to capture dose data over network
- Integrated with Philips DoseWise
- Get Staff + Patient RDSR
- Event-level data
- Reference dosimeter

Current data ultisation

Trainee feedback project

- Downloaded DoseWise dose/event data
- Merged with CIS data
 - Procedural stuff [stents/contrast volume]
 - Operator status [first/second]
- Produced HTML report
- Emailed to 2/4 trainees
- Meeting between 2/4 trainees, consultant & me for discussion
- Provide 'gold standard' report for comparison

The Report

Part 1 – Summary 'activity' data

Metrics

Metric Table (For Nov 2018)

Metrics for all Procedures Performed in this Month

	Procedure Type		
	Cardiac Angio Coronary Stenting (K499A);	Cardiac Angio Coronaries Only (K633B);	
Total Number of Matched Procedures between CVIS and DoseWise	17	5	
Total Number of Procedures the Operator wore their Badge	17	4	
Median Operator Dose per Procedure (mSv)	0.00558	0.00632	
Median Contrast Volume Used per Procedure (ml)	110	70	
Median Patient DAP per Procedure (Gycm ²)	21.2	12.9	
Mean Number of Acquisition Runs per Procedure	26.7	9.6	
Mean Number of Frames per Acquisition Run	57.6	78.7	
Percentage of Events where the Operator Dose is Above 10% of the Reference Dose	1.29	3.33	
Median Screening Time per Procedure (s)	341	174	

Number of Stents Used in PCI Procedures

Number of Stents	1	2	3
Times Used	10	3	4

Part 2 – Trend data [Gold]

Part 3 – 'Heat' Maps

Heat Map of the Average Number of Frames per Run Performed at each Angle (Stationary Acquisition)

Part 3 – 'Heat' Maps

Heat Map of Average Operator Dose per Frame (Stationary Acquisition)

Early trainee feedback

- Trainees very interested in heat maps
- Especially the angulations
 - Saw their practice visually
 - Engaged with consultant as to how to modify technique
 - We now see improvements [although numbers small]!
- Additionally, moving to quarterly data collection as numbers too small
- Considering rolling out to all staff

"A touch less rigour on the feedback next time, Stephen."

Passive v. Electronic

- Generally, staff feedback of their doses has raised interest/awareness
- Software auto reports not good enough
- Need time to input to implement/interpret – more input from Medical Physics Expert
- Could we correlate passive/active? This was initial project objective

... and then eye dose limit reduction led to ...

All Classified dosimeters – not that good!

Exclude device staff – just include LHS table work – much better!

Cumulative dose : Red = device staff

Plus dodgy individual excluded from data!

Initial conclusions

- Looks robust enough to dispense with passive monitoring for PCI work
- Need to further analyse RHS table data
- Moving to thyroid shields with dosimeter pouch

What next?

Further Work

- Extend reports to all cardiologists
- Write up paper for dosimeter correlation
- Eliminate passive dosimeters [apart from finger monitoring] (assuming further data analysis OK!)
- Develop radiation dashboards for lead radiographer & Cardiology Radiation Management Group
- ?hopefully extend to interventional radiology
- ?possibilities for collaboration/joint projects

